Как перевести атмосферы в паскали
Avtotehpomosch-kruglosutochno.ru

Автомобильный портал

Как перевести атмосферы в паскали

Конвертер величин

Перевести единицы: паскаль [Па] в физическая атмосфера [атм]

Инфразвуковые волны

Подробнее о давлении

Общие сведения

В физике давление определяется как сила, действующая на единицу площади поверхности. Если две одинаковые силы действуют на одну большую и одну меньшую поверхность, то давление на меньшую поверхность будет больше. Согласитесь, гораздо страшнее, если вам на ногу наступит обладательница шпилек, чем хозяйка кроссовок. Например, если надавить лезвием острого ножа на помидор или морковь, овощ будет разрезан пополам. Площадь поверхности лезвия, соприкасающаяся с овощем, мала, поэтому давление достаточно велико, чтобы разрезать этот овощ. Если же надавить с той же силой на помидор или морковь тупым ножом, то, скорее всего, овощ не разрежется, так как площадь поверхности ножа теперь больше, а значит давление — меньше.

В системе СИ давление измеряется в паскалях, или ньютонах на квадратный метр.

Относительное давление

Иногда давление измеряется как разница абсолютного и атмосферного давления. Такое давление называется относительным или манометрическим и именно его измеряют, например, при проверке давления в автомобильных шинах. Измерительные приборы часто, хотя и не всегда, показывают именно относительное давление.

Атмосферное давление

Атмосферное давление — это давление воздуха в данном месте. Обычно оно обозначает давление столба воздуха на единицу площади поверхности. Изменение в атмосферном давлении влияет на погоду и температуру воздуха. Люди и животные страдают от сильных перепадов давления. Пониженное давление вызывает у людей и животных проблемы разной степени тяжести, от психического и физического дискомфорта до заболеваний с летальным исходом. По этой причине, в кабинах самолетов поддерживается давление выше атмосферного на данной высоте, потому что атмосферное давление на крейсерской высоте полета слишком низкое.

Атмосферное давление понижается с высотой. Люди и животные, живущие высоко в горах, например в Гималаях, адаптируются к таким условиям. Путешественники, напротив, должны принять необходимые меры предосторожности, чтобы не заболеть из-за того, что организм не привык к такому низкому давлению. Альпинисты, например, могут заболеть высотной болезнью, связанной с недостатком кислорода в крови и кислородным голоданием организма. Это заболевание особенно опасно, если находиться в горах длительное время. Обострение высотной болезни ведет к серьезным осложнениям, таким как острая горная болезнь, высокогорный отек легких, высокогорный отек головного мозга и острейшая форма горной болезни. Опасность высотной и горной болезней начинается на высоте 2400 метров над уровнем моря. Во избежание высотной болезни доктора советуют не употреблять депрессанты, такие как алкоголь и снотворное, пить много жидкости, и подниматься на высоту постепенно, например, пешком, а не на транспорте. Также полезно есть большое количество углеводов, и хорошо отдыхать, особенно если подъем в гору произошел быстро. Эти меры позволят организму привыкнуть к кислородной недостаточности, вызванной низким атмосферным давлением. Если следовать этим рекомендациям, то организму сможет вырабатывать больше красных кровяных телец для транспортировки кислорода к мозгу и внутренним органам. Для этого организм увеличат пульс и частоту дыхания.

Первая медицинская помощь в таких случаях оказывается немедленно. Важно переместить больного на более низкую высоту, где атмосферное давление выше, желательно на высоту ниже, чем 2400 метров над уровнем моря. Также используются лекарства и портативные гипербарические камеры. Это легкие переносные камеры, в которых можно повысить давление с помощью ножного насоса. Больного горной болезнью кладут в такую камеру, в которой поддерживается давление, соответствующее более низкой высоте над уровнем моря. Такая камера используется только для оказания первой медицинской помощи, после чего больного необходимо спустить ниже.

Некоторые спортсмены используют низкое давление, чтобы улучшить кровообращение. Обычно для этого тренировки проходят в нормальных условиях, а спят эти спортсмены в среде с низким давлением. Таким образом, их организм привыкает к высокогорным условиям и начинает вырабатывать больше красных кровяных телец, что, в свою очередь, повышает количество кислорода в крови, и позволяет достичь более высоких результатов в спорте. Для этого выпускаются специальные палатки, давление в которых регулируются. Некоторые спортсмены даже изменяют давление во всей спальне, но герметизация спальни — дорогостоящий процесс.

Скафандры

Пилотам и космонавтам приходится работать в среде с низким давлением, поэтому они работают в скафандрах, позволяющих компенсировать низкое давление окружающей среды. Космические скафандры полностью защищают человека от окружающей среды. Их используют в космосе. Высотно-компенсационные костюмы используют пилоты на больших высотах — они помогают пилоту дышать и противодействуют низкому барометрическому давлению.

Гидростатическое давление

Гидростатическое давление — это давление жидкости, вызванное силой тяжести. Это явление играет огромную роль не только в технике и физике, но также и в медицине. Например, кровяное давление — это гидростатическое давление крови на стенки кровеносных сосудов. Кровяное давление — это давление в артериях. Оно представлено двумя величинами: систолическим, или наибольшим давлением, и диастолическим, или наименьшим давлением во время сердцебиения. Приборы для измерения артериального давления называются сфигмоманометрами или тонометрами. За единицу артериального давления приняты миллиметры ртутного столба.

Кружка Пифагора — занимательный сосуд, использующий гидростатическое давление, а конкретно — принцип сифона. Согласно легенде, Пифагор изобрел эту чашку, чтобы контролировать количество выпитого вина. По другим источникам эта чашка должна была контролировать количество выпитой воды во время засухи. Внутри кружки находится изогнутая П-образная трубка, спрятанная под куполом. Один конец трубки длиннее, и заканчивается отверстием в ножке кружки. Другой, более короткий конец, соединен отверстием с внутренним дном кружки, чтобы вода в чашке наполняла трубку. Принцип работы кружки схож с работой современного туалетного бачка. Если уровень жидкости становится выше уровня трубки, жидкость перетекает во вторую половину трубки и вытекает наружу, благодаря гидростатическому давлению. Если уровень, наоборот, ниже, то кружкой можно спокойно пользоваться.

Давление в геологии

Давление — важное понятие в геологии. Без давления невозможно формирование драгоценных камней, как природных, так и искусственных. Высокое давление и высокая температура необходимы также и для образования нефти из остатков растений и животных. В отличие от драгоценных камней, в основном образующихся в горных породах, нефть формируется на дне рек, озер, или морей. Со временем над этими остатками собирается всё больше и больше песка. Вес воды и песка давит на остатки животных и растительных организмов. Со временем этот органический материал погружается глубже и глубже в землю, достигая нескольких километров под поверхностью земли. Температура увеличивается на 25 °C с погружением на каждый километр под земной поверхностью, поэтому на глубине нескольких километров температура достигает 50–80 °C. В зависимости от температуры и перепада температур в среде формирования, вместо нефти может образоваться природный газ.

Природные драгоценные камни

Образование драгоценных камней не всегда одинаково, но давление — это одна из главных составных частей этого процесса. К примеру, алмазы образуются в мантии Земли, в условиях высокого давления и высокой температуры. Во время вулканических извержений алмазы перемещаются в верхние слои поверхности Земли благодаря магме. Некоторые алмазы попадают на Землю с метеоритов, и ученые считают, что они образовались на планетах, похожих на Землю.

Синтетические драгоценные камни

Производство синтетических драгоценных камней началось в 1950-х годах, и набирает популярность в последнее время. Некоторые покупатели предпочитают природные драгоценные камни, но искусственные камни становятся все более и более популярными, благодаря низкой цене и отсутствию проблем, связанных с добычей натуральных драгоценных камней. Так, многие покупатели выбирают синтетические драгоценные камни потому, что их добыча и продажа не связана с нарушением прав человека, детским трудом и финансированием войн и вооруженных конфликтов.

Одна из технологий выращивания алмазов в лабораторных условиях — метод выращивания кристаллов при высоком давлении и высокой температуре. В специальных устройствах углерод нагревают до 1000 °C и подвергают давлению около 5 гигапаскалей. Обычно в качестве кристалла-затравки используют маленький алмаз, а для углеродной основы применяют графит. Из него и растет новый алмаз. Это самый распространенный метод выращивания алмазов, особенно в качестве драгоценных камней, благодаря низкой себестоимости. Свойства алмазов, выращенных таким способом, такие же или лучше, чем свойства натуральных камней. Качество синтетических алмазов зависит от метода их выращивания. По сравнению с натуральными алмазами, которые чаще всего прозрачны, большинство искусственных алмазов окрашено.

Благодаря их твердости, алмазы широко используются на производстве. Помимо этого ценятся их высокая теплопроводность, оптические свойства и стойкость к щелочам и кислотам. Режущие инструменты часто покрывают алмазной пылью, которую также используют в абразивных веществах и материалах. Большая часть алмазов в производстве — искусственного происхождения из-за низкой цены и потому, что спрос на такие алмазы превышает возможности добывать их в природе.

Читать еще:  Как снять бороду на ваз 2107

Некоторые компании предлагают услуги по созданию мемориальных алмазов из праха усопших. Для этого после кремации прах очищается, пока не получится углерод, и затем на его основе выращивают алмаз. Изготовители рекламируют эти алмазы как память об ушедших, и их услуги пользуются популярностью, особенно в странах с большим процентом материально обеспеченных граждан, например в США и Японии.

Метод выращивания кристаллов при высоком давлении и высокой температуре

Метод выращивания кристаллов при высоком давлении и высокой температуре в основном используется для синтеза алмазов, но с недавнего времени этот метод помогает усовершенствовать натуральные алмазы или изменить их цвет. Для искусственного выращивания алмазов используют разные прессы. Самый дорогой в обслуживании и самый сложный из них — это пресс кубического типа. Он используется в основном для улучшения или изменения цвета натуральных алмазов. Алмазы растут в прессе со скоростью примерно 0,5 карата в сутки.

Перевод паскалей в атмосферы

‘);> //–>
Давление – это физическая величина, численно равная силе, действующей на единицу площади поверхности перпендикулярно этой поверхности.

1 атмосфера = 101325 Па

Быстро выполнить эту простейшую математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

Для сложных расчетов по переводу нескольких единиц измерения в требуемую (например для математического, физического или сметного анализа группы позиций) вы можете воспользоваться универсальными конвертерами единиц измерения.

На этой странице представлен самый простой онлайн переводчик единицы измерения паскали в атмосферы. С помощью этого калькулятора вы в один клик сможете перевести Па в атмосферы и обратно.

Давление — это величина, которая равна силе, действующей строго перпендикулярно на единицу площади поверхности. Рассчитывается по формуле: P = F/S. Международная система исчисления предполагает измерение такой величины в паскалях (1 Па равен силе в 1 ньютон на площадь 1 квадратный метр, Н/м2). Но поскольку это достаточно малое давление, то измерения чаще указываются в кПа или МПа. В различных отраслях принято использовать свои системы исчисления, в автомобильной, давления может измеряться: в барах, атмосферах, килограммах силы на см² (техническая атмосфера), мега паскалях или фунтах на квадратный дюйм (psi).

Для быстрого перевода единиц измерения следует ориентироваться на такое взаимоотношение значений друг к другу:

1 PSI ≈ 0.07 кгс/см²;

Таблица соотношения единиц измерения давления
Величина МПа бар атм кгс/см2 psi at
1 МПа 1 10 9,8692 10,197 145,04 10.19716
1 бар 0,1 1 0,9869 1,0197 14,504 1.019716
1 атм (физическая атмосфера) 0,10133 1,0133 1 1,0333 14,696 1.033227
1 кгс/см2 0,098066 0,98066 0,96784 1 14,223 1
1 PSI (фунт/дюйм²) 0,006894 0,06894 0,068045 0,070307 1 0.070308
1 at (техническая атмосфера) 0.098066 0.980665 0.96784 1 14.223 1

Зачем нужен калькулятор перевода единиц давления

Онлайн калькулятор позволит быстро и точно перевести значения из одних единиц измерения давления в другие. Такая конвертация может пригодятся автовладельцам при замере компрессии в двигателе, при проверке давления в топливной магистрали, накачке шин до требуемого значения (очень часто приходится перевести PSI в атмосферы или МПа в бар при проверке давления), заправке кондиционера фреоном. Поскольку, шкала на манометре может быть в одной системе исчисления, а в инструкции совсем в другой, то нередко возникает потребность перевести бары в килограммы, мегапаскали, килограмм силы на квадратный сантиметр, технические или физические атмосферы. Либо, если нужен результат в английской системе исчисления, то и фунт-силы на квадратный дюйм (lbf•in²), дабы точно соответствовать требуемым указаниям.

Как пользоваться online калькулятором

Для того чтобы воспользоваться мгновенным переводом одной величины давления в другую и узнать сколько будет бар в мпа, кгс/см², атм или psi нужно:

  1. В левом списке выбрать единицу измерения, с которой нужно выполнить преобразование;
  2. В правом списке установить единицу, в которую будет выполняется конвертирование;
  3. Сразу после ввода числа в любое из двух полей появляется «результат». Так что можно перевести как с одной величины в другую так и на оборот.

Например, в первое поле было введено число 25, то в зависимости от выбранной единицы, вы подсчитаете сколько это будет баров, атмосфер, мегапаскалей, килограмм силы произведенной на один см² или фунт-сила на квадратный дюйм. Когда же это самое значение было поставлено в другое (правое) поле, то калькулятор посчитает обратное соотношение выбранных физических величин давления.

Подпишись на наш канал в Я ндекс.Дзене

Еще больше полезных советов в удобном формате

Паскаль
Па, Pa
Величина давление, механическое напряжение
Система СИ
Тип производная

Паскаль равен давлению, вызываемому силой, равной одному ньютону, равномерно распределённой по нормальной к ней поверхности площадью один квадратный метр: 1 Па = 1 Н·м −2 (т. е. 1 Па = 1 Н/м 2 ).

С основными единицами СИ паскаль связан следующим образом: 1 Па = 1 кг·м −1 ·с −2 (т. е. 1 кг/(м·с 2 ) ).

В соответствии с общими правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы паскаль пишется со строчной буквы, а её обозначение — с заглавной. Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием паскаля. Например, обозначение единицы динамической вязкости записывается как Па·с.

Единица названа в честь французского физика и математика Блеза Паскаля. Впервые наименование было введено во Франции декретом о единицах в 1961 году [2] [3] .

Содержание

Кратные и дольные единицы [ править | править код ]

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
10 1 Па декапаскаль даПа daPa 10 −1 Па деципаскаль дПа dPa
10 2 Па гектопаскаль гПа hPa 10 −2 Па сантипаскаль сПа cPa
10 3 Па килопаскаль кПа kPa 10 −3 Па миллипаскаль мПа mPa
10 6 Па мегапаскаль МПа MPa 10 −6 Па микропаскаль мкПа µPa
10 9 Па гигапаскаль ГПа GPa 10 −9 Па нанопаскаль нПа nPa
10 12 Па терапаскаль ТПа TPa 10 −12 Па пикопаскаль пПа pPa
10 15 Па петапаскаль ППа PPa 10 −15 Па фемтопаскаль фПа fPa
10 18 Па эксапаскаль ЭПа EPa 10 −18 Па аттопаскаль аПа aPa
10 21 Па зеттапаскаль ЗПа ZPa 10 −21 Па зептопаскаль зПа zPa
10 24 Па иоттапаскаль ИПа YPa 10 −24 Па иоктопаскаль иПа yPa
применять не рекомендуется

Сравнение с другими единицами измерения давления [ править | править код ]

Единицы давления
Паскаль
(Pa, Па) Бар
(bar, бар) Техническая атмосфера
(at, ат) Физическая атмосфера
(atm, атм) Миллиметр ртутного столба
(мм рт. ст., mm Hg, Torr, торр) Метр водяного столба
(м вод. ст., m H2O) Фунт-сила на квадратный дюйм
(psi) 1 Па 1 Н/м² 10 −5 10,197⋅10 −6 9,8692⋅10 −6 7,5006⋅10 −3 1,0197⋅10 −4 145,04⋅10 −6 1 бар 10 5 1⋅10 6 дин/см² 1,0197 0,98692 750,06 10,197 14,504 1 ат 98066,5 0,980665 1 кгс/см² 0,96784 735,56 10 14,223 1 атм 101325 1,01325 1,033 1 атм 760 10,33 14,696 1 мм рт. ст. 133,322 1,3332⋅10 −3 1,3595⋅10 −3 1,3158⋅10 −3 1 мм рт. ст. 13,595⋅10 −3 19,337⋅10 −3 1 м вод. ст. 9806,65 9,80665⋅10 −2 0,1 0,096784 73,556 1 м вод. ст. 1,4223 1 psi 6894,76 68,948⋅10 −3 70,307⋅10 −3 68,046⋅10 −3 51,715 0,70307 1 lbf/in²

На практике применяют приближённые значения: 1 атм = 0,1 МПа и 1 МПа = 10 атм. 1 мм водяного столба примерно равен 10 Па, 1 мм ртутного столба равен приблизительно 133 Па.

Значение технической атмосферы (at, ат) не равно значению физической атмосферы (atm, атм).

Нормальное атмосферное давление принято считать равным 760 мм ртутного столба, или 101 325 Па (101 кПа).

Размерность единицы давления (Н/м²) совпадает с размерностью единицы плотности энергии (Дж/м³), но с точки зрения физики эти единицы не эквивалентны, так как описывают разные физические свойства. В связи с этим некорректно использовать Паскали для измерения плотности энергии, а давление записывать как Дж/м³.

Давление воздушной оболочки Земли: одна атмосфера в Паскалях

Все живые существа на Земле не замечают давления, которое оказывает на них грандиозная воздушная оболочка нашей планеты. Причина в том, что они с самого рождения привыкли к воздействию на них атмосферы, а организмы их приспособлены к нему биологически.

Меж тем подобное газообразное облако на самом деле имеет немалый вес. Оно удерживается силой тяжести планеты, благодаря чему не улетучивается в бескрайний космос, простираясь ввысь на тысячу километров. И это значит, что воздушная оболочка оказывает давление на все, находящееся на поверхности земного шара. Сколько же составляет одна атмосфера в Паскалях? Выразить давление воздуха в цифрах ученым удалось еще в XVII веке.

Вам будет интересно: Мощность электродвигателя: формула, правила расчета, виды и классификация электродвигателей

Атмосферное давление

В Регенсбурге в 1654 году Отто фон Герике продемонстрировал императору Фердинанду III и своим ученым собратьям зрелищный опыт. Немецкий физик взял два медных полых полушария, небольших по величине (в диаметре около 35,6 см). Затем плотно прижал их друг к другу, соединив кожаным кольцом, и откачал воздух изнутри посредством вставной трубки и насоса. После чего полушария невозможно было разъединить. Более того, это не смогли сделать шестнадцать лошадей, привязанных к железным кольцам с двух концов с каждой стороны образовавшейся сферы.

Читать еще:  Как подтянуть тросик ручника

Этот эксперимент продемонстрировал миру действие на окружающие предметы давления. Именно эта сила настолько сдавила обе части сферы. А значит, величина ее воистину впечатляющая. Через два года замечательный опыт был повторен в Магдебурге. Там сферу пытались разорвать уже 24 лошади, но с тем же успехом. Указанные полушария, используемые во время эксперимента, вошли в историю под называнием магдебургских. Они до сих пор хранятся в немецком музее.

Одна атмосфера в Паскалях

Как рассчитать давление газообразной мантии планеты? Не было бы ничего проще, если бы с точностью оказались известны плотность воздуха и высота воздушной оболочки. Но в XVII веке ученые еще не могли знать подобные вещи. Однако прекрасно справились с указанной задачей. И это впервые сделал ученик Галилея – итальянец Торричелли.

Он взял метровой длины стеклянную трубку и наполнил ртутью, предварительно запаяв один из концов. А открытую часть опустил в сосуд с тем же веществом. При этом часть ртути из трубки устремилась вниз. Однако, вылилась не вся. А высота оставшегося столбика составила около 760 мм. Именно этот опыт позволил впоследствии легко рассчитать: сколько Паскалей в одной атмосфере. Это число примерно составляет 101 300 Па. Именно такова величина нормального атмосферного давления.

Объяснение опыта Торричелли

Давление атмосферы оказывает действие на все земные тела. Но оно незаметно, потому что уравновешивается действием воздуха, находящегося в самих предметах и живых организмах. Эксперимент с магдебургскими полушариями красноречиво показал, что бы происходило, если бы газ не имел свойства проникать практически везде. В образовавшейся сфере было искусственно создано безвоздушное пространство. Вследствие чего она и оказалась необыкновенно прочна и неразделима, сдавливаемая со всех сторон одной атмосферой, в Паскалях величина давления которой, как нам уже известно, весьма значительна.

Эти же законы заложены в основу действия насосов. В образовавшееся безвоздушное пространство устремляется жидкость. Она поднимается до тех самых пор пока существующие давление воздуха и вещества не уравновесят друг друга. А высота столбика зависит от плотности жидкости.

Зная это, Торричелли измерил давление, создаваемое одной атмосферой. В Паскали эту величину он перевести, конечно же, еще не мог. Это сделали позже. А потому он измерил ее в миллиметрах ртутного столба. Известно, что в подобных единицах атмосферное давление принято измерять и в наше время.

Как перевести атмосферы в Паскали

Француз Блез Паскаль (его портрет чуть выше), именем которого и названы единицы измерения давления, узнав об экспериментах Торричелли, повторил подобные опыты на разных высотах, используя, помимо ртути, воду и другие жидкости. И этим окончательно доказал наличие и действие атмосферного давления на земные тела и вещества, хотя сомневающихся в те времена было много.

Ниже показано, как давление в атмосферах перевести в Паскали и в другие единицы измерения.

Эта величина не постоянна и зависит от многих показателей. Прежде всего, от высоты над уровнем моря. Как доказал Паскаль, чем выше поднимаешься на вершину горы, тем давление становится меньше. Это легко объяснимо. Ведь глубина воздушной оболочки уменьшается, как и ее плотность. И уже на высоте примерно равной 5,5 км показатели давления вдвое снижаются. А если подняться на 11 км, то эта величина уменьшится в четыре раза.

Кроме того, атмосферное давление зависит от погоды. Потому-то этот показатель и считается значимым при ее прогнозах. К примеру, чем выше давление летом, тем больше вероятность того, что в этот день солнце порадует своими лучами и не будет осадков.

Давление воздушной оболочки Земли: одна атмосфера в Паскалях

Все живые существа на Земле не замечают давления, которое оказывает на них грандиозная воздушная оболочка нашей планеты. Причина в том, что они с самого рождения привыкли к воздействию на них атмосферы, а организмы их приспособлены к нему биологически.

Меж тем подобное газообразное облако на самом деле имеет немалый вес. Оно удерживается силой тяжести планеты, благодаря чему не улетучивается в бескрайний космос, простираясь ввысь на тысячу километров. И это значит, что воздушная оболочка оказывает давление на все, находящееся на поверхности земного шара. Сколько же составляет одна атмосфера в Паскалях? Выразить давление воздуха в цифрах ученым удалось еще в XVII веке.

Атмосферное давление

В Регенсбурге в 1654 году Отто фон Герике продемонстрировал императору Фердинанду III и своим ученым собратьям зрелищный опыт. Немецкий физик взял два медных полых полушария, небольших по величине (в диаметре около 35,6 см). Затем плотно прижал их друг к другу, соединив кожаным кольцом, и откачал воздух изнутри посредством вставной трубки и насоса. После чего полушария невозможно было разъединить. Более того, это не смогли сделать шестнадцать лошадей, привязанных к железным кольцам с двух концов с каждой стороны образовавшейся сферы.

Этот эксперимент продемонстрировал миру действие на окружающие предметы давления. Именно эта сила настолько сдавила обе части сферы. А значит, величина ее воистину впечатляющая. Через два года замечательный опыт был повторен в Магдебурге. Там сферу пытались разорвать уже 24 лошади, но с тем же успехом. Указанные полушария, используемые во время эксперимента, вошли в историю под называнием магдебургских. Они до сих пор хранятся в немецком музее.

Одна атмосфера в Паскалях

Как рассчитать давление газообразной мантии планеты? Не было бы ничего проще, если бы с точностью оказались известны плотность воздуха и высота воздушной оболочки. Но в XVII веке ученые еще не могли знать подобные вещи. Однако прекрасно справились с указанной задачей. И это впервые сделал ученик Галилея – итальянец Торричелли.

Он взял метровой длины стеклянную трубку и наполнил ртутью, предварительно запаяв один из концов. А открытую часть опустил в сосуд с тем же веществом. При этом часть ртути из трубки устремилась вниз. Однако, вылилась не вся. А высота оставшегося столбика составила около 760 мм. Именно этот опыт позволил впоследствии легко рассчитать: сколько Паскалей в одной атмосфере. Это число примерно составляет 101 300 Па. Именно такова величина нормального атмосферного давления.

Объяснение опыта Торричелли

Давление атмосферы оказывает действие на все земные тела. Но оно незаметно, потому что уравновешивается действием воздуха, находящегося в самих предметах и живых организмах. Эксперимент с магдебургскими полушариями красноречиво показал, что бы происходило, если бы газ не имел свойства проникать практически везде. В образовавшейся сфере было искусственно создано безвоздушное пространство. Вследствие чего она и оказалась необыкновенно прочна и неразделима, сдавливаемая со всех сторон одной атмосферой, в Паскалях величина давления которой, как нам уже известно, весьма значительна.

Эти же законы заложены в основу действия насосов. В образовавшееся безвоздушное пространство устремляется жидкость. Она поднимается до тех самых пор пока существующие давление воздуха и вещества не уравновесят друг друга. А высота столбика зависит от плотности жидкости.

Зная это, Торричелли измерил давление, создаваемое одной атмосферой. В Паскали эту величину он перевести, конечно же, еще не мог. Это сделали позже. А потому он измерил ее в миллиметрах ртутного столба. Известно, что в подобных единицах атмосферное давление принято измерять и в наше время.

Как перевести атмосферы в Паскали

Француз Блез Паскаль (его портрет чуть выше), именем которого и названы единицы измерения давления, узнав об экспериментах Торричелли, повторил подобные опыты на разных высотах, используя, помимо ртути, воду и другие жидкости. И этим окончательно доказал наличие и действие атмосферного давления на земные тела и вещества, хотя сомневающихся в те времена было много.

Ниже показано, как давление в атмосферах перевести в Паскали и в другие единицы измерения.

Эта величина не постоянна и зависит от многих показателей. Прежде всего, от высоты над уровнем моря. Как доказал Паскаль, чем выше поднимаешься на вершину горы, тем давление становится меньше. Это легко объяснимо. Ведь глубина воздушной оболочки уменьшается, как и ее плотность. И уже на высоте примерно равной 5,5 км показатели давления вдвое снижаются. А если подняться на 11 км, то эта величина уменьшится в четыре раза.

Кроме того, атмосферное давление зависит от погоды. Потому-то этот показатель и считается значимым при ее прогнозах. К примеру, чем выше давление летом, тем больше вероятность того, что в этот день солнце порадует своими лучами и не будет осадков.

Читать еще:  Шевроле лачетти как подтянуть ручник

СТИЛЬ-АВТО

Паскаль (единица измерения). Как перевести паскали в метры

Как переводить в паскали?

Паскаль – это единица измерения механического давления (по-другому, механического напряжения). Паскаль относится к одной из производных единиц Международной Системы Величин. В русском варианте принято сокращение Па, в международном – Ра. Названа эта единица так в честь французского ученого Блеза Паскаля.

Однако давление принято измерять не только в Паскалях, но и в других единицах. Как переводить в паскали различные величины измерения давления? Разберем на конкретных примерах задания, где требуется перевести давление в паскали.

Бары в паскали

Перевести бары в паскали можно, умножив заданную величину на 100 000, так как 1 бар равен 100 000 паскалей.

  • Пример: 2 bar = 200 000 Pa

Атмосферы в паскали

  1. Физические атмосферы по аналогии с барами умножаем на 101 325 Пример: 3 atm = 303 975 Pa
  2. Технические атмосферы нужно умножить на 98 066,5 Пример: 4 at = 392 266 Pa

Ньютоны на квадратный метр в паскали

Один ньютон на квадратный метр равен одному паскалю. Поэтому никаких математических расчетов здесь производить не нужно.

Килоньютон на квадратный метр в паскали

Одна единица килоньютона на квадратный метр составляет 1000 единиц паскалей.

Миллиметры ртутного столба в паскали

Один миллиметр ртутного столба составляет 133,322 паскаля, следовательно умножать будем на 133,322.

  • Пример: 3 mmHg = 399,966 Pa

Килограмм силы на квадратный метр в паскали

В такой единице, как килограмм силы на квадратный метр, или кгс на метр, содержится 9,807 паскалей. Поэтому чтобы перевести эту единицу в паскали, нужно умножить на 9,807.

  • Пример: 9 kgf/m2 = 88,263 Pa

Килограмм силы на квадратный сантиметр в паскали

Килограмм силы на квадратный сантиметр – тоже довольно частая величина, встречающаяся в задачах по физике. В одной такой единице содержится 98 070 паскалей.

  • Пример: 4 kgf/cm2 = 392 280 Pa

Надеемся, что наши советы и формулы окажутся полезными при решении ваших задач.

Паскаль (единица измерения) – это. Что такое Паскаль (единица измерения)?

У этого термина существуют и другие значения, см. Паскаль (значения).

Паска́ль (обозначение: Па, международное: Pa) — единица измерения давления (механического напряжения) в Международной системе единиц (СИ).

Паскаль равен давлению (механическому напряжению), вызываемому силой, равной одному ньютону, равномерно распределённой по нормальной к ней поверхности площадью один квадратный метр.

1 Па = 1 Н/м2 ≡ 1 Дж/м3 ≡ 1 кг/(м·с2) ;

Единица названа в честь французского физика и математика Блеза Паскаля.

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольныевеличина название обозначение величина название обозначение101 Па

10−1 Па

102 Па

10−2 Па

103 Па

10−3 Па

106 Па

10−6 Па

109 Па

10−9 Па

1012 Па

10−12 Па

1015 Па

10−15 Па

1018 Па

10−18 Па

1021 Па

10−21 Па

1024 Па

10−24 Па

декапаскаль даПа daPa деципаскаль дПа dPa
гектопаскаль гПа hPa сантипаскаль сПа cPa
килопаскаль кПа kPa миллипаскаль мПа mPa
мегапаскаль МПа MPa микропаскаль мкПа µPa
гигапаскаль ГПа GPa нанопаскаль нПа nPa
терапаскаль ТПа TPa пикопаскаль пПа pPa
петапаскаль ППа PPa фемтопаскаль фПа fPa
эксапаскаль ЭПа EPa аттопаскаль аПа aPa
зеттапаскаль ЗПа ZPa зептопаскаль зПа zPa
йоттапаскаль ИПа YPa йоктопаскаль иПа yPa
применять не рекомендуется

Сравнение с другими единицами измерения давления

Единицы давления

Паскаль(Pa, Па) Бар(bar, бар) Техническая атмосфера(at, ат) Физическая атмосфера(atm, атм) Миллиметр ртутного столба(мм рт.ст.,mmHg, Torr, торр) Метр водяного столба(м вод. ст.,m h3O) Фунт-силана кв. дюйм(psi)1 Па

1 бар

1 ат

1 атм

1 мм рт.ст.

1 м вод. ст.

1 psi

1 Н/м2 10−5 10,197·10−6 9,8692·10−6 7,5006·10−3 1,0197·10−4 145,04·10−6
105 1·106дин/см2 1,0197 0,98692 750,06 10,197 14,504
98066,5 0,980665 1 кгс/см2 0,96784 735,56 10 14,223
101325 1,01325 1,033 1 атм 760 10,33 14,696
133,322 1,3332·10−3 1,3595·10−3 1,3158·10−3 1 мм рт.ст. 13,595·10−3 19,337·10−3
9806,65 9,80665·10−2 0,1 0,096784 73,556 1 м вод. ст. 1,4223
6894,76 68,948·10−3 70,307·10−3 68,046·10−3 51,715 0,70307 1 lbf/in2

На практике применяют приближённые значения: 1 атм = 0,1 МПа и 1 МПа = 10 атм. 1 мм водяного столба примерно равен 10 Па, 1 мм ртутного столба равен приблизительно 133 Па.

Нормальное атмосферное давление принято считать равным 760 мм ртутного столба, или 101 325 Па (101 кПа).

Размерность единицы давления (Н/м2) совпадает с размерностью единицы плотности энергии (Дж/м3), но с точки зрения физики эти единицы не эквивалентны, так как описывают разные физические свойства. В связи с этим некорректно использовать Паскали для измерения плотности энергии, а давление записывать как Дж/м3.

народ как перевести Паскали в Ньютоны деленные на метр

P=F/S. [F]=[(кг*м) /с^2] =[м^2] Вот и получается [Паскаль] =[кг/(с^2*м)]

Па=Н/м^2, переводить ничего не нужно: это одна система СИ

1 Н = кг*м/с^2
1 Па = H/м^2

Умножить нга единицу :). Паскаль – это и есть ньютон на кв. метр. Только метр именно квадратный.

Помогите, как кПа (килопаскали) перевести в метры (любые)

в паскалях измеряют давление, а не длинну

а не пробовал перевести Джоули в секунды или Сигареты в печенье

Паскали – давление аметры -длина(разные величины)
Ты хочешь из тапочек получить бегемота

Интерактивный перевод величин: Мощность http://www.convert-me.com/ru/convert/pressure 1 КПа = 0,102 м вод. ст.

Чтобы перевести кПа в метры водяного столба необходимо число в кПа умножить на 1000 (переводим в Па), затем поделить на плотность воды, а потом поделить на ускорение свободного падения 9.81.
Для перевода в метры ртутного столба надо поделить на плотность ртути.

Это просто. 10^5 Паскалей примерно равен 740 мм. ртутного столба. То есть 100 КилоПаскалей = 0,74 метра ртутного столба.
То есть 1 кПа = 0,0074 метра рт. ст.

Итого, чтобы перевести x кПа в метры, надо x умножить на 0,0074.

1 сантиметр ртутного столба соотвествует:
килопаскаль1,33322

в метры р.с. переведешь сам.

в паскалях измеряют давление, в метрах — линейные размеры; поставь вопрос корректно.

converter.org – Конвертер для единиц Давление, как

Время

Секунда, Минута, Час, Сутки, Неделя, Месяц (31 день), Год в системе СИ, Миллисекунда, .

Давление

Паскаль, Бар, Торр, Миллиметр ртутного столба, Миллиметр водяного столба, Дюйм ртутного столба, Дюйм водяного столба, .

Длина

Метр, Километр, Ангстрем, Ярд, Миля, Дюйм, Астрономическая единица, Световой год, .

Индуктивность

Генри, Микрогенри, Миллигенри, Килогенри, Вебер на ампер, Абгенри, .

Количество информации

Бит, Килобит, Байт, Килобайт, Мегабайт, Гигабайт, .

Магнитная индукция

Тесла, Пикотесла, Нанотесла, Вебер на квадратный сантиметр, Гаусс, Гамма, Максвелл на квадратный метр, .

Магнитный поток

Вебер, Максвелл, Квант магнитного потока, Тесла-квадратный метр, Гаусс-квадратный сантиметр, .

Масса/вес

Килограмм, Метрическая тонна, Унция, Фунт, Стоун, Карат, Фунт, Фун, Момме, Хиакуме, Фынь (кандарин), Лян (таэль), .

Массовый расход

Килограмм в секунду, Метрическая тонна в час, Длинная тонна в час, Фунт в секунду, Короткая тонна в час, .

Момент силы

Ньютон-метр, Килоньютон-метр, Миллиньютон-метр, Килограмм-сила-метр, Унция-сила-дюйм, Дина-метр, .

Мощность

Ватт, Киловатт, Метрическая лошадиная сила, Британская тепловая единица в час, Фут-фунт-сила в секунду, .

Напряжённость магнитного поля

Ампер на метр, Микроампер на метр, Миллиампер на метр, Эрстед, Гильберт на метр, .

Объём

Кубический метр, Литр, Миллилитр, Кубический дюйм, Кубический фут, Галлон, Пинта, Миним, Сяку, Ложка для соли, Стакан, .

Объёмный расход

Кубический метр в секунду, Литр в минуту, Галлон (США) в минуту, .

Плотность

Килограмм на кубический метр, Миллиграмм на кубический метр, Грамм на кубический сантиметр, Унция на кубический дюйм, Фунт на кубический фут, .

Площадь

Квадратный метр, Гектар, Ар, Квадратный фут, Акр, Квадратный дюйм, .

Радиоактивность

Беккерель, Кюри, Резерфорд, Распад в секунду, .

Ньютон, Дина, Килограмм-сила (килопонд), Фунт-сила, Паундаль, Килоньютон, Деканьютон, Грамм-сила, .

Скорость

Метр в секунду, Километр в час, Миля в час, Фут в секунду, Узел, .

Скорость передачи данных

Бит в секунду, Килобит в минуту, Мегабайт в секунду, Гигабайт в секунду, Килобайт в минуту, .

Температура

Градус Цельсия, Кельвин, Градус Фаренгейта, Градус Реомюра, Градус Ранкина, Градус Рёмера, Градус Делиля, .

Градус, Радиан, Минута дуги, Секунда дуги, Град (гон), Тысячная (НАТО), Румб, Квадрант, .

Эквивалентная доза излучения

Зиверт, Нанозиверт, Микрозиверт, Джоуль на килограмм, Бэр, Микробэр, Миллибэр, .

Электрическая ёмкость

Фарад, Микрофарад, Нанофарад, Пикофарад, Интфарад, Абфарад, Статфарад, .

Электрическая проводимость

Сименс, Мо, Ампер на вольт, .

Электрический заряд

Кулон, Франклин, Абкулон, Статкулон, Элементарный заряд, Ампер-час, .

Электрический ток

Ампер, Пикоампер, Наноампер, Микроампер, Абампер, Кулон в секунду, .

Электрическое сопротивление

Ом, Пикоом, Наноом, Микроом, Абом, Вольт на ампер, .

Энергия

Джоуль, Электронвольт, Калория, Британская тепловая единица, Киловатт-час, .

Ссылка на основную публикацию
Adblock
detector